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ABSTRACT: Optimal designs have been constructed for
differential scanning calorimetry (DSC) experiments con-
ducted under constant-heating-rate conditions for materials
that are a priori assumed to follow nth-order kinetics. Two
different operating scenarios are considered, including sin-
gle-scan and multiscan DSC experiments for eight different
kinetic parameter combinations representing a range of typ-

ical polymeric curing reactions. The resulting designs are
studied to determine which kinetic model parameters are
influential in determining the optimal design. VC 2010 Wiley
Periodicals, Inc. J Appl Polym Sci 117: 2133–2139, 2010

Key words: differential scanning calorimetry (DSC);
kinetics (polym.); thermosets

INTRODUCTION

Differential scanning calorimetry (DSC) is a well-
known experimental thermal analysis technique that
can be used to investigate a range of thermal events.
Very briefly, DSC experiments compare the differ-
ence in the input energies required by an inert refer-
ence and the sample under investigation to maintain
a specified temperature or heating rate. When the
sample undergoes an exothermic event (e.g., a poly-
merization reaction), it requires less energy input
than the reference, whereas the sample undergoing
an endothermic event (e.g., a phase change) requires
more energy input than the reference. When the
sample is stable, the energy input difference between
it and the reference remains constant and is a func-
tion of the heat capacity and mass of the two.

There are two common modes of operation for DSC
experiments: isothermal and constant heating rate. In
isothermal experiments, the temperature of the sam-
ple and reference is quickly changed to the desired
test temperature, and then it is maintained there for
the duration of the experiment. This approach has the
appeal of simple data analysis, but multiple experi-
ments must be conducted if temperature effects are to
be determined. Isothermal experiments can also be
used to confirm kinetic parameters estimated from

constant-heating-rate experiments. In constant-heat-
ing-rate experiments, the temperatures of the sample
and the reference are keep equal but are raised at a
predetermined constant rate. This approach has the
advantage of being able to determine temperature
effects and can also require less time than isothermal
experiments. Data analysis1–4 for constant-heating-
rate experiments is more difficult than for isothermal
experiments, but modern computing techniques have
eliminated this worry for the most part. In this article,
we are concerned only with the constant-heating-rate
mode of DSC operation.
One common use for constant-heating-rate DSC

experiments is the determination of the kinetics of
polymerization reactions. Because polymerization
reactions are seldom, if ever, simple reactions ame-
nable to analysis from first principles, simplified ki-
netic expressions in terms of the extent of reaction
are used to model the reaction chemistry. The most
common and simplest is first-order kinetics:

@a
@t

¼ k 1� að Þ (1)

where a is the extent of reaction (unitless), t is the time
(s), and k is the rate constant (s�1). The latter is usually
assumed to have an Arrhenius temperature dependence:

k ¼ Ae�
E
RTð Þ (2)

where A is the pre-exponential factor (s�1), E is the
activation energy (J/mol), R is the gas constant
(8.3145 J/mol K), and T is the temperature (K).
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For most polymerization reactions, first-order
kinetics does not adequately describe the reaction
chemistry, and so other expressions, albeit arbitrary,
are sometime assumed to be suitable. In order of
increasing complexity, four of these expressions are5

• nth-order kinetics, a three-parameter model
given by

@a
@t

¼ k 1� að Þn (3)

• mn autocatalytic kinetics, a four-parameter
model given by

@a
@t

¼ k 1� að Þnam (4)

• m autocatalytic plus nth-order kinetics (which
we refer to as man kinetics), a six-parameter
model given by

@a
@t

¼ k1 þ k2a
mð Þ 1� að Þn (5)

• lmn kinetics, a seven-parameter model given by

@a
@t

¼ k1 1� að Þn þ k2a
m 1� að Þl (6)

In all these models, l, m, and n are model parame-
ters and the rate constants (k, k1, and k2) are all
assumed to have an Arrhenius temperature depend-
ence as given by eq. (2). However, the values of A
and E determined for the rate constant for one form
of the kinetic model cannot be used for another
form. Also, the two rate constants used in the man
and lmn kinetic models have separate and distinct
values of A and E; that is, values of A1, E1, A2, and
E2 must be determined.

The design of constant-heating-rate DSC experi-
ments for both first-order and nth-order kinetic
models has already been discussed.6–8 In this article,
our interest is designing constant-heating-rate DSC
experiments for the nth-order kinetic model, that is,
Figure 3. When designing an experiment, we explic-
itly mean the specification of the level(s) and inde-
pendent factor(s) that will be used when the experi-
ment is being conducted; that is, we do not mean
the experimental procedure or equipment design.
For constant-heating-rate DSC experiments, there are
two independent factors that must be specified: the
heating rate(s) and extent(s) of reaction. The neces-
sity of specifying the heating rate(s) is obvious, and

with today’s computer-controlled apparatus, it is
common to specify the frequency with which the data
are recorded and then to use all that data (there could
be hundreds of data points) in the analysis. However,
as shown earlier,6 the judicious selection of a few
points from each scan results in more reliable esti-
mates of the kinetic parameters. Thus, the challenge
in designing these DSC experiments is to determine
the best heating rate(s) and extent(s) of reaction to
provide the most accurate estimates of the kinetic pa-
rameters. This can be accomplished with a design
technique known as D-optimal design.9–11

The general formulation for D-optimal experimen-
tal design for continuous designs10 begins by the a
priori specification of a specific functional relation-
ship between the independent factor(s) and the de-
pendent response factor(s):

y ¼ f x; bð Þ (7)

where y is the vector of dependent factors, x is the
vector of independent factors, and b is the vector of
model parameters. On the basis of this model selec-
tion, the information matrix (M) is formed as follows:

M ¼
XN
i¼1

@f xi; bð Þ
@b

@f xi; bð Þ
@b

� �T( )
(8)

where the summation is taken over N data points
and xi explicitly refer to the set of independent fac-
tors for the ith experiment. For the case of three
model parameters, which is shown for the sake of
illustration, M becomes

M¼
XN
i¼1

@f xi;bð Þ
@b1

h i2
@f xi;bð Þ
@b1

@f xi;bð Þ
@b2

@f xi;bð Þ
@b1

@f xi;bð Þ
@b3

@f xi;bð Þ
@b1

@f xi;bð Þ
@b2

@f xi;bð Þ
@b2

h i2
@f xi;bð Þ
@b2

@f xi;bð Þ
@b3

@f xi;bð Þ
@b1

@f xi;bð Þ
@b3

@f xi;bð Þ
@b2

@f xi;bð Þ
@b3

@f xi;bð Þ
@b3

h i2

8>>>><
>>>>:

9>>>>=
>>>>;

(9)

The extension of this to a larger number of model
parameters is straightforward. The D-optimal design
is then given by the set of independent factors that
minimize the determinant of the inverse of M.

D-OPTIMAL FORMULATION

M for the case of nth-order kinetics studied with a
constant-heating-rate DSC experiment can now be
formulated. First, b is given by

b ¼ A1;E1=R; nð ÞT (10)

where the first two factors are the pre-exponential
and activation energy values for rate constant k and
n has its usual meaning. The normalization of E1
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was done to enhance the stability of the numerical
solutions discussed later.

Before the independent and dependent factors are
defined, DSC data analysis needs to be discussed. A
typical DSC scan is plotted with the temperature as
the independent factor and the input energy difference
as the response factor. A linear baseline is then con-
structed from the beginning of the reaction to the com-
pletion of the reaction. For simplicity, we have
assumed that the baseline is horizontal; that is, that the
heat capacities of the reactant and the product are the
same. Once this is done, a can be obtained as follows:

a ¼
R Ta

T0
C� Bð ÞdTR Te

T0
C� Bð ÞdT

(11)

where T0 and Te are the initial and end temperatures
of the reaction (K), Ta is the temperature (K) at extent
of reaction a, and C and B represent the DSC and
baseline curves, respectively. This gives an explicit
relationship between the temperature and the extent
of reaction. For simplicity, the baseline is assumed to
be identically equal to zero; that is, there is no differ-
ence in the thermal mass (the product of the mass and
heat capacity) for the sample and the reference. In the
following analysis, simple linear interpolation is used
to compute both a and Ta on the basis of tabular data
computed for the incremental integration of eq. (5)
based on uniform time steps. In the rest of the devel-
opment, we have elected to treat a as the independent
factor and Ta as the dependent response factor. Given
this, x is determined as follows:

xi ¼ hi; aið ÞT (12)

where hi is the heating rate (K/min). A design, or a
measure, is then obtained as follows:

nr;j ¼ x1; x2; . . . ; xj
� �T

(13)

where subscripts r and j refer to the run number
and the number of points in the design, respectively.
To further simplify the design calculations, it has
been assumed that the heating rate is bounded

between 1 and 10 K/min and must be an integer. It
has also been assumed that the response tempera-
ture is determined for discrete values of the extent
of reaction ranging from 10 to 90% in 5% steps.
As for the examination of the effects of the model

parameters on the resulting D-optimal design, the
large number of parameters prohibits us from exam-
ining all possible combinations of them in some sys-
tematic manner. However, because a systematic
manner of investigating these effects was desired,
we used a classic eight-run 23 factorial design capa-
ble of detecting main effects.12 The values of the pa-
rameters for the eight runs are given in terms of
coded levels in Table I, and the coded levels for
each factor are given in Table II.
For the current problem statement, the jkth ele-

ment of M is given by

Mjk ¼
XN
i¼1

@Ta xi; bð Þ
@bj

@Ta xi; bð Þ
@bk

" #
(14)

For each run in the factorial design, the derivatives
needed to calculate M were calculated with a central
difference scheme for each admissible extent of reac-
tion and at each possible heating rate. These 510
points (3 derivatives, 17 extents of reaction, and 10
heating rates) for each combination of the model pa-
rameters were calculated and stored for subsequent
use in determining the optimal design.
To determine the optimal design, a pick-and-

exchange algorithm was used.10 This algorithm has
six distinct steps: (1) specify all the points at which the
experiment could be conducted; (2) randomly select N
of these points as the initial design; (3) compute the
standardized variance at all points (those included in
the design and those omitted from the design); (4)
find the point with the smallest standardized variance
of the design points and the point with the largest
standardized variance of the omitted points; (5)
exchange these two points to create a new design; and
(6) if the new design is more efficient than the previ-
ous design, that is, has a larger determinant ofM, con-
tinue the process starting with step 3, but otherwise
restore the previous design and terminate the process.
Because the final design selected may depend on the
initial points selected at step 2, steps 2–6 are repeated
many times, and the solution at the end of each itera-
tion is recorded. From these multiple solutions, the
most efficient are selected as the final designs.

TABLE I
Eight-Run 23 Factorial Design in Coded Factor Levels

Run A1 E1/R n

1 1 1 1
2 �1 1 1
3 1 �1 1
4 �1 �1 1
5 1 1 �1
6 �1 1 �1
7 1 �1 �1
8 �1 �1 �1

TABLE II
Low and High Levels of the Model Parameters

Level A1 (s
�1) E1/R (K) n

�1 1.00 � 104 7.00 � 103 1
þ1 5.00 � 104 1.00 � 104 2
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RESULTS AND DISCUSSION

Two experimental strategies were considered, and
the appropriate D-optimal designs were generated
for both. The first strategy was that of a single DSC
scan, in which the optimal heating rate and extents
of reaction needed to be determined. The second
strategy was that of multiple scan rates with one or
more extents of reaction from each scan used in the
determination of the kinetic constants. Each of these
strategies is discussed.

Single-scan designs

To compute the D-optimal designs for single-scan
experiments, the pick-and-exchange algorithm was
used to determine the optimal design for each of the
possible heating rates. The optimal design consisted
of the three extents of reaction that minimized the
determinant of the inverse of M at that heating rate.
From these 10 designs, the one with the smallest de-
terminant was selected as the D-optimal design. This
process was repeated for each combination of kinetic
parameters as specified in Tables I and II.

The results for the single-scan DSC D-optimal
designs using just three extents of reaction, the mini-
mum number necessary to estimate the three kinetic
parameters in the model, are presented in Table III
for all eight kinetic parameter combinations. From
the data in Table III, it is immediately apparent that
there are only two unique experimental designs and
that those two designs vary only slightly. Both
designs use an optimal heating rate of 6 K/s and
points at the extremes of allowable extents of reac-
tion, that is, at a ¼ 0.10 and a ¼ 0.90. The center
point in the design is either a ¼ 0.60 or a ¼ 0.55,
depending on the run. It is also apparent from a
comparison of the results in Table III and the design
presented in Table I that the extent of reaction for
the center point depends on the level of exponent n:
a ¼ 0.60 is appropriate for n ¼ 1, whereas a ¼ 0.55
is used for n ¼ 2.
An additional variation on the single-scan strategy

that was examined was the effect of using more
than the minimum of three points from a scan in the
design (as would be the most likely application in
practice). Optimal designs for up to eight points
were determined for all eight combinations of the ki-
netic parameters being considered here. For all cases
except one, as was just seen when three points were

TABLE III
Optimal Designs for the Single-Scan Constant-Heating-
Rate DSC Experiments Using Three Points To Determine

the Model Parameters for nth-Order Kinetics

Run Design measure

1 n1,3 ¼ {(6,0.10), (6,0.60), (6,0.90)}T

2 n2,3 ¼ {(6,0.10), (6,0.60), (6,0.90)}T

3 n3,3 ¼ {(6,0.10), (6,0.60), (6,0.90)}T

4 n4,3 ¼ {(6,0.10), (6,0.60), (6,0.90)}T

5 n5,3 ¼ {(6,0.10), (6,0.55), (6,0.90)}T

6 n6,3 ¼ {(6,0.10), (6,0.55), (6,0.90)}T

7 n7,3 ¼ {(6,0.10), (6,0.55), (6,0.90)}T

8 n8,3 ¼ {(6,0.10), (6,0.55), (6,0.90)}T

TABLE IV
Optimal Designs for the Single-Scan Constant-Heating-
Rate DSC Experiments Using Eight Points To Determine

the Model Parameters for nth-Order Kinetics

Run Design measure

1 n1,8 ¼ {(6,0.10), (6,0.15), (6,0.50), (6,0.55),
(6,0.60), (6,0.65), (6,0.85), (6,0.90)}T

2 n2,8 ¼ {(6,0.10), (6,0.15), (6,0.50), (6,0.55),
(6,0.60), (6,0.65), (6,0.85), (6,0.90)}T

3 n3,8 ¼ {(6,0.10), (6,0.15), (6,0.50), (6,0.55),
(6,0.60), (6,0.65), (6,0.85), (6,0.90)}T

4 n4,8 ¼ {(6,0.10), (6,0.15), (6,0.50), (6,0.55),
(6,0.60), (6,0.65), (6,0.85), (6,0.90)}T

5 n5,8 ¼ {(6,0.10), (6,0.15), (6,0.45), (6,0.50),
(6,0.55), (6,0.60), (6,0.85), (6,0.90)}T

6 n6,8 ¼ {(6,0.10), (6,0.15), (6,0.45), (6,0.50),
(6,0.55), (6,0.60), (6,0.85), (6,0.90)}T

7 n7,8 ¼ {(6,0.10), (6,0.15), (6,0.45), (6,0.50),
(6,0.55), (6,0.60), (6,0.85), (6,0.90)}T

8 n8,8 ¼ {(6,0.10), (6,0.15), (6,0.45), (6,0.50),
(6,0.55), (6,0.60), (6,0.85), (6,0.90)}T

TABLE V
Optimal Designs for the Multiscan Constant-Heating-
Rate DSC Experiments Used To Determine the Model

Parameters for nth-Order Kinetics

Number Design measure

3 n1,3 ¼ {(1,0.90), (10,0.15), (10,0.90)}T

4 n1,4 ¼ {(1,0.10), (1,0.90), (10,0.40), (10,0.90)}T

5 n1,5 ¼ {(1,0.10), (1,0.90), (9,0.90), (10,0.35), (10,0.90)}T

6 n1,6 ¼ {(1,0.10), (1,0.90), (9,0.90), (10,0.35),
(10,0.40), (10,0.90)}T

7 n1,7 ¼ {(1,0.10), (1,0.85), (1,0.90), (9,0.90),
(10,0.30), (10,0.35), (10,0.90)}T

8 n1,8 ¼ {(1,0.10), (1,0.85), (1,0.90), (8,0.90),
(9,0.90), (10,0.30), (10,0.35), (10,0.90)}T

The kinetic parameters for run 1 in Tables I and II were
used.

Figure 1 Standardized variance for the design measure
n8,3.
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used, only two unique designs were determined,
and the difference between these two designs was
only a single point. This is shown in Table IV for the
case for which eight points were used in the design;
for designs with five, six, or seven points, similar
results were obtained, but they are not reported
here. The exceptions to this were the designs with
four points at a single scan rate. For this case, seven
of the eight designs followed the anticipated pattern,
but the design for run 4 did not. Instead of being
identical to either of the other designs, the design
for run 4 used one interior point that was unique to
this set of kinetic parameters. The reason for this is
still under investigation.

The quality of the experimental design can be con-
sidered by an examination of the standardized var-
iance (di) for predicted values over the entire experi-
mental region of interest. di is determined as follows:

di ¼ N
@f xi; bð Þ

@b

� �T
M

@f xi; bð Þ
@b

(15)

where N is the number of experimental points and
point xi may or may not be a point at which the
experiment was conducted. For illustration pur-
poses, the standardized variance is plotted in
Figure 1 for the single-scan design measure n8,3 pre-
sented in Table III. The general equivalence theorem
requires for a D-optimal design that the standar-
dized variance be less than or equal to the number
of parameters in the model. It is apparent that this
criterion is not satisfied by this design and that, in
general, predictions for slow heating rates will have
a great deal of uncertainty associated with them as a
result of the experimental design, even though this
design minimizes the volume of the joint confidence
interval of the parameter estimates. To more accu-
rately predict the behavior at slower heating rates, a
different experimental strategy must be considered.

Multiscan designs

A more general experimental strategy is to select the
best N experimental points from the 510 possible

TABLE VI
Optimal Designs for the Multiscan Constant-Heating-
Rate DSC Experiments Used to Determine the Model

Parameters for nth-Order Kinetics

Number Design measure

3 n2,3 ¼ {(1,0.90), (10,0.20), (10,0.90)}T

4 n2,4 ¼ {(1,0.10), (1,0.90), (10,0.40), (10,0.90)}T

5 n2,5 ¼ {(1,0.10), (1,0.90), (9,0.90),
(10,0.35), (10,0.90)}T

6 n2,6 ¼ {(1,0.10), (1,0.90), (9,0.90),
(10,0.35), (10,0.40), (10,0.90)}T

7 n2,7 ¼ {(1,0.10), (1,0.85), (1,0.90),
(9,0.90), (10,0.35), (10,0.40), (10,0.90)}T

8 n2,8 ¼ {(1,0.10), (1,0.85), (1,0.90),
(8,0.90), (9,0.90), (10,0.30), (10,0.35), (10,0.90)}T

The kinetic parameters for run 2 in Tables I and II were
used.

TABLE VII
Optimal Designs for Multiscan Constant-Heating-Rate

DSC Experiments Used to Determine the Model
Parameters for nth-Order Kinetics

Number Design measure

3 n3,3 ¼ {(1,0.90), (10,0.20), (10,0.90)}T

4 n3,4 ¼ {(1,0.10), (1,0.90), (10,0.45), (10,0.90)}T

5 n3,5 ¼ {(1,0.10), (1,0.90), (9,0.90),
(10,0.40), (10,0.90)}T

6 n3,6 ¼ {(1,0.10), (1,0.90), (9,0.90),
(10,0.35), (10,0.40), (10,0.90)}T

7 n3,7 ¼ {(1,0.10), (1,0.15), (1,0.90),
(9,0.90), (10,0.45), (10,0.50), (10,0.90)}T

8 n3,8 ¼ {(1,0.10), (1,0.15), (1,0.85),
(1,0.90), (9,0.90), (10,0.45), (10,0.50), (10,0.90)}T

The kinetic parameters for run 3 in Tables I and II were
used.

TABLE VIII
Optimal Designs for the Multiscan Constant-Heating-
Rate DSC Experiments Used to Determine the Model

Parameters for nth-Order Kinetics

Number Design measure

3 n4,3 ¼ {(1,0.90), (10,0.20), (10,0.90)}T

4 n4,4 ¼ {(1,0.10), (1,0.90), (10,0.40), (10,0.90)}T

5 n4,5 ¼ {(1,0.10), (1,0.90), (9,0.90),
(10,0.35), (10,0.90)}T

6 n4,6 ¼ {(1,0.10), (1,0.90), (9,0.90), (10,0.35),
(10,0.40), (10,0.90)}T

7 n4,7 ¼ {(1,0.10), (1,0.85), (1,0.90), (9,0.90),
(10,0.35), (10,0.40), (10,0.90)}T

8 n4,8 ¼ {(1,0.10), (1,0.85), (1,0.90), (8,0.90),
(9,0.90), (10,0.30), (10,0.35), (10,0.90)}T

The kinetic parameters for run 4 in Tables I and II were
used.

TABLE IX
Optimal Designs for the Multiscan Constant-Heating-
Rate DSC Experiments Used to Determine the Model

Parameters for nth-Order Kinetics

Number Design measure

3 n5,3 ¼ {(1,0.90), (10,0.15), (10,0.90)}T

4 n5,4 ¼ {(1,0.10), (1,0.90), (10,0.40), (10,0.90)}T

5 n5,5 ¼ {(1,0.10), (1,0.90), (9,0.90),
(10,0.35), (10,0.90)}T

6 n5,6 ¼ {(1,0.10), (1,0.90), (9,0.90), (10,0.30),
(10,0.35), (10,0.90)}T

7 n5,7 ¼ {(1,0.10), (1,0.15), (1,0.90), (9,0.90),
(10,0.40), (10,0.45), (10,0.90)}T

8 n5,8 ¼ {(1,0.10), (1,0.15), (1,0.85), (1,0.90),
(9,0.90), (10,0.35), (10,0.40), (10,0.90)}T

The kinetic parameters for run 5 in Tables I and II were
used.
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points and not constrain the experiment to a single
heating rate. The results of these calculations for N
¼ 3, 4,. . ., 8 for all eight combinations of the kinetic
parameters are presented in Tables V–XII. Generally,
designs using four points add a point to the three-
point designs that fills a corner of the experimental
region that is not covered in the three-point design.
As additional points are added to the four-point
design, however, they cluster near the existing
points until the eight-point design is very similar to
a two-fold replication of the four-point design. This
is also illustrated in Figure 2, in which all 64 points
from the eight 8-point designs have been plotted to
show the portion of the experimental space used in
the designs. In Figure 2, there are only 13 unique
points, of which 8 would be used by any particular
design. The points are grouped in four clusters, each
cluster containing one of the points from the four-
point designs. This then suggests that perhaps
instead of using eight distinct points, using a four-

point design and replicating it would be more effi-
cient. The design efficiency scaled for the number of
points used in the experiments (pi) is determined as
follows:

pi ¼
Nj

Ni

Mij j
Mj

�� ��
 !1=p

(16)

where N is the number of experimental points in the
design, M is the information matrix for the design, p
is the number of model parameters (i.e., p ¼ 3 for
this study), and subscripts i and j indicate the
design. For all comparisons, we selected j ¼ 8. The
scaled design efficiencies comparing the i-point
designs and the eight-point designs are given in Ta-
ble XIII. For all cases, either the three- or four-point
designs were the most efficient when scaled by the
number of points. However, this is slightly mislead-
ing because a three-point design cannot be repli-
cated 2 1/3 times to be equivalent in effort to an
eight-point design. The four-point designs, which
were the most efficient 75% of the time and the sec-
ond most efficient the remaining 25% of the time,

TABLE X
Optimal Designs for the Multiscan Constant-Heating-
Rate DSC Experiments Used to Determine the Model

Parameters for nth-Order Kinetics

Number Design measure

3 n6,3 ¼ {(1,0.10), (10,0.40), (10,0.90)}T

4 n6,4 ¼ {(1,0.10), (1,0.90), (10,0.40), (10,0.90)}T

5 n6,5 ¼ {(1,0.10), (1,0.90), (10,0.40),
(10,0.45), (10,0.90)}T

6 n6,6 ¼ {(1,0.10), (1,0.90), (9,0.90), (10,0.35),
(10,0.40), (10,0.90)}T

7 n6,7 ¼ {(1,0.10), (1,0.15), (1,0.90), (9,0.90),
(10,0.40), (10,0.45), (10,0.90)}T

8 n6,8 ¼ {(1,0.10), (1,0.15), (1,0.90), (9,0.90),
(10,0.35), (10,0.40), (10,0.45), (10,0.90)}T

The kinetic parameters for run 6 in Tables I and II were
used.

TABLE XI
Optimal Designs for the Multiscan Constant-Heating-
Rate DSC Experiments Used to Determine the Model

Parameters for nth-Order Kinetics

Number Design measure

3 n7,3 ¼ {(1,0.10), (10,0.40), (10,0.90)}T

4 n7,4 ¼ {(1,0.10), (2,0.90), (10,0.45), (10,0.90)}T

5 n7,5 ¼ {(1,0.10), (2,0.90), (10,0.40),
(10,0.45), (10,0.90)}T

6 n7,6 ¼ {(1,0.10), (1,0.15), (2,0.90), (10,0.45),
(10,0.50), (10,0.90)}T

7 n7,7 ¼ {(1,0.10), (1,0.15), (2,0.90), (9,0.90),
(10,0.40), (10,0.45), (10,0.90)}T

8 n7,8 ¼ {(1,0.10), (1,0.15), (2,0.90), (9,0.90),
(10,0.40), (10,0.45), (10,0.50), (10,0.90)}T

The kinetic parameters for run 7 in Tables I and II were
used.

TABLE XII
Optimal Designs for the Multiscan Constant-Heating-
Rate DSC Experiments Used to Determine the Model

Parameters for nth-Order Kinetics

Number Design measure

3 n8,3 ¼ {(1,0.10), (10,0.40), (10,0.90)}T

4 n8,4 ¼ {(1,0.10), (1,0.90), (10,0.40), (10,0.90)}T

5 n8,5 ¼ {(1,0.10), (1,0.90), (10,0.40),
(10,0.45), (10,0.90)}T

6 n8,6 ¼ {(1,0.10), (1,0.90), (9,0.90), (10,0.35),
(10,0.40), (10,0.90)}T

7 n8,7 ¼ {(1,0.10), (1,0.15), (1,0.90), (9,0.90),
(10,0.40), (10,0.45), (10,0.90)}T

8 n8,8 ¼ {(1,0.10), (1,0.15), (1,0.90), (9,0.90),
(10,0.35), (10,0.40), (10,0.45), (10,0.90)}T

The kinetic parameters for run 8 in Tables I and II were
used.

Figure 2 Location of experimental points for all 8 runs
for the multiscan nr,8 design measures.

2138 MANNARSWAMY ET AL.

Journal of Applied Polymer Science DOI 10.1002/app



can be exactly replicated twice to require the same
effort as the eight-point designs, which would result
in a 2.5% to 8.4% increase in efficiency.

The improvement with the multiscan strategy
compared to the single-scan approach can be seen
by a comparison of the standardized deviations for
the former (given in Fig. 2 for run 8) and the latter
(already given in Fig. 1). Most notable in this com-
parison is that the maximum standardized variance
in the experimental region has decreased from 35.7
to 3.2; this is a significant improvement in the ability
to predict the model response. We also note that this
surface is supported equally at the four support
points, that is, the four points at which the experi-
ment was conducted. This design is not quite D-
optimal because the maximum standardized var-
iance is still greater than 3; however, this is most
likely due to the limitations placed on allowable
heating rates and extents of reaction; that is, this is
not a continuous design.

CONCLUSIONS

In this study, D-optimal designs were constructed
for both single-scan and multiscan constant-heating-
rate DSC experiments for which it had been
assumed a priori that nth-order kinetics were appro-
priate. The designs were developed for kinetic pa-
rameters typical of polymerization reactions. For the
single-scan experiments, it was shown that for all

cases the optimal heating rate was 6 K/min, and only
two unique, though very similar designs were devel-
oped for the eight combinations of kinetic parameters
studied. It was also shown that this was not a highly
effective design for estimating the kinetic parameters.
For the multiscan experiments, it was shown that the
optimal heating rates were 1 and 10 K/min, and the
assumed extremes were experimentally realizable. It
was also shown that the general development of the
design as experimental points were added involved
the placement of the additional points near those that
were included in the four-point design. Furthermore,
it was shown that it would be more efficient to repli-
cate the four-point design than to conduct an eight-
point design. Therefore, it is recommended that when
nth-order kinetics is assumed (or known) to be appro-
priate, constant-heating-rate DSC experiments should
be conducted at 1 and 10 K/min with as many repli-
cates as possible to provide the most reliable esti-
mates of the kinetic parameters for polymerization
reactions.
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TABLE XIII
Scaled Efficiencies for the Multiscan Constant-Heating-Rate DSC Experiments Used to Determine the Model

Parameters for nth-Order Kinetics

Number Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

3 109.3 109.7 107.3 110.0 101.7 95.5 99.4 95.6
4 107.4 107.3 108.4 107.2 106.7 104.1 102.5 104.1
5 105.2 105.1 105.3 105.0 103.0 101.9 101.3 101.9
6 103.1 103.1 104.2 103.0 102.6 100.9 101.0 100.9
7 101.7 101.7 102.0 101.7 101.6 101.5 101.0 101.5
8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

The kinetic parameters in Tables I and II were used.

Figure 3 Standardized variance for the design measure
n8,4.

Journal of Applied Polymer Science DOI 10.1002/app

CONSTANT-HEATING-RATE DSC EXPERIMENTS 2139


